Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 663: 379-386, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38412723

RESUMO

Organic fluorescent crystals were obtained using single-benzene-based diethyl 2,5-dihydroxyterephthalate (DDT) molecules through crystallization from a droplet of the DDT solution on an Au substrate. To control the size of the DDT crystals, the surface energy of the Au substrate was modified with air plasma treatment, producing a hydrophilic surface and a hydrophobic self-assembled monolayer (SAM) coating. The size of DDT crystals increased as the surface energy of the substrate decreased. The averaged cross-section area of the DDT crystals on the Au substrates increased in the order of the air-plasma-treated substrate (∼23.43 µm2) < pristine substrate (∼225.6 µm2) < hydrophobic SAM-coated substrate (∼2240 µm2). On the other hand, the main emission of the DDT crystals redshifted from blue to green as the crystal size increased, which is related to the aggregation of the DDT crystals. Moreover, the coffee-ring effect during the DDT crystallization was hindered by controlling the solvent evaporation conditions. As examples of the application of the proposed technique, patterned DDT crystals were obtained using selectively patterned hydrophobic and hydrophilic substrates.

2.
J Phys Chem Lett ; 14(3): 750-762, 2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36651880

RESUMO

The charge transfer (CT) process has attracted much attention due to its contribution to the improvement of spectroscopic phenomena such as Raman scattering and fluorescence. A current challenge is understanding what factors can influence CT. Here, it is demonstrated that the enhancement factor (EF) of CT (∼2000) can reach the level of electromagnetic enhancement (∼1680) when resonant CT is carried out by (Fermi level energy) band alignment between a metal nanoparticle (NP) and conjugated polymer (polypyrrole (PPy)) nanowire (NW). This band alignment results in an on- or off-resonant CT. As a proof of concept for CT based surface enhanced Raman scattering (SERS) template, the Ag NPs-decorated PPy NW is utilized to effectively enhance the Raman signal of rhodamine 6G (EF of 5.7 × 105). Hence, by means of our demonstration, it is proposed that controlling the band alignment should be considered an important parameter for obtaining a large EF of spectroscopic phenomena.

3.
J Phys Chem Lett ; 13(5): 1300-1306, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35099975

RESUMO

Surface-enhanced Raman spectroscopy (SERS) can sense some molecules in a nondestructive manner. Using SERS, we investigate the shifts in the Raman peaks of polypyrrole (PPy) with two different coordinated silver (Ag) structures, Ag nanoparticles (NPs) and Ag dendrite film. The SERS spectrum of PPy with Ag NPs presents a ring-stretching peak that is red-shifted compared to the ring-stretching peak in the Raman spectrum of PPy. In contrast, the spectrum of the PPy with the Ag dendrite film exhibits a blue-shifted ring stretching peak. The various coordinated Ag nanostructures result in opposite Raman shifts of the ring stretching peak; this phenomenon has been investigated and confirmed by density functional theory (DFT) calculations of the Raman shift of the pyrrole (Py) molecule with a Ag layer (SERS of PPy with Ag NPs) and that of a charge-transferred Py molecule (SERS of PPy with Ag dendrite films). This result demonstrates that DFT calculations can be an effective tool to scrutinize Raman shifts in SERS.

4.
Sci Rep ; 5: 9825, 2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-25950724

RESUMO

Half-metallicity recently predicted in the zigzag-edge graphene nanoribbons (ZGNRs) and the hydrogenated carbon nanotubes (CNTs) enables fully spin-polarized electric currents, providing a basis for carbon-based spintronics. In both carbon systems, the half-metallicity arises from the edge-localized electron states under an electric field, lowering the critical electric field Dc for the half-metallicity being an issue in recent works on ZGNRs. A properly chosen direction of the electric field alone has been predicted to significantly reduce Dc in the hydrogenated CNTs, which in this work turned out to be the case in narrow bilayer ZGNRs (biZGNRs). Here, our simple model based on the electrostatic potential difference between the edges predicts that for wide biZGNRs of width greater than ~2.0 nm (10 zigzag carbon chains), only one layer of the biZGNRs becomes half-metallic leaving the other layer insulating as confirmed by our density functional theory (DFT) calculations. The electric field-induced switching of the spin-polarized current path is believed to open a new route to graphene-based spintronics applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...